

www.astri.org | TECH FOR IMPACT

Active Electromagnetic Interference (EMI) Filter for Conducted Noise Reduction

Susan, Danting XU Sep 2022

IP-PatDis-01-01 Revision: 7 香港應用科技研究院有限公司 Hong Kong Applied Science and Technology Research Institute Company Limited

14 ASTRI

connology Joint Lab

員電總局廣播科學研究院 超高清電視技術聯合實驗室

IoT Technologies & Applications

應科院 - 中國語科信息利用和10000

ASTRI - SHHIC Joint Laboratory of Wireless

應科院 - 華虹設計 無線物聯網技術及應用聯合研發中心

應科院網絡安全研究與培訓中心

Research and Development Innovation Laboratory

ASTRI - AccoreSys

Visual Intelligence Joint Lab

應科院 - 智擎信息系統(上海)有限(

HSBC

滙豐 - 應科院聯合研發創新實驗室

HSBC - ASTRI

ASTRI

Hong Kong Applied Science and Technology **Research Institute Company Limited (ASTRI)**

A Research and Development Laboratory

ASTRI - CETC ISA

Innovation Joint Lab

雨科院 - 華亘聯合研發實驗室

Founded by the Government of the Hong Kong SAR in 2000

Research and Development Center August - Real State House J

evelopment Centra Asmus Tana

Technology Division

- Integrated Circuits and Systems (ICS) $\sqrt{}$

- Trust and AI Technologies
- Communications Technologies
- IoT Sensing and AI Technologies

https://www.astri.org

Outline

- I. What is conducted EMI noise
- **II.** Noise source and propagation path
- **III. Noise measurement and extraction**
- **IV. Mitigation techniques for conducted EMI**
- V. A proposed active EMI circuit

Outline

I. What is conducted EMI noise

- II. Noise source and propagation path
- **III. Noise measurement and extraction**
- **IV. Mitigation techniques for conducted EMI**
- V. A proposed active EMI circuit

What is conducted EMI noise (1/3)

Conducted EMI: propagates along conductors

Definition: noise that are generated by a device or a circuit and transferred to another device or circuit via cabling, PCB traces, power/ground planes, or parasitic capacitance.

What is conducted EMI noise (2/3)

Switch-Mode Power Supply (SMPS):

- Light, small, efficient
- Power MOSFETs work in fast on/off operation, e.g. hundred kHz

What is conducted EMI noise (3/3)

Dangers of conducted EMI:

- Affecting internal sensitive circuits of SMPS: e.g. feedback pins, frequency settings, compensation networks, sensing paths
- Affecting operation of external devices and pollute power network

□ A product must pass the related EMI standard in that region

□Frequency range:

- Start: depends on different EMI standards, e.g. 150kHz for CISPR 22; 450kHz for FCC part15; 9kHz for CISPR 15
- > Stop: 30MHz

□Noise mode:

- ➤ Common mode (CM)
- Differential mode (DM)

I. What is conducted EMI noise

II. Noise source and propagation path

III. Noise measurement and extraction

IV. Mitigation techniques for conducted EMI

V. A proposed active EMI circuit

Noise Source and Propagation Path (1/3)

Example 1: boost converter

The CM noise path and DM noise path in a boost converter

Noise Source and Propagation Path (2/3)

Example 2: buck converter

The CM noise path and DM noise path in a buck converter

Ref: A Practical Method for Separating Common-Mode and Differential-Mode Emissions in Conducted Emissions Testing, Analog

Noise Source and Propagation Path

Example 3: active clamp flyback converter

EMI noise path of active clamp flyback converter

Ref: Huanng X. al, Conducted EMI analysis and filter design for MHz active clamp flyback front-end converter, APEC 2016

Outline

I. What is conducted EMI noise

II. Noise source and propagation path

III. Noise measurement and extraction

- **IV. Mitigation techniques for conducted EMI**
- V. A proposed active EMI circuit

Noise Measurement and Extraction (1/4)

Conducted EMI measurement setup

Noise Measurement and Extraction (2/4)

LISN: Line Impedance Stabilization Network

- > A device widely used in conducted emission and susceptibility tests
- > To provide a stable power line impedance so that the measurement results can be repeatable.

- R₁ & R₂: 50 ohms impedance in EMI receiver
- \succ C₂ & C₄: form a high pass filter with R₁ & R₂
- > L₁ & L₂: filter inductors in LISN
- \succ C₁ & C₃: filter capacitors in LISN

Noise Measurement and Extraction (3/4)

Noise Measurement and Extraction (4/4)

CM/DM extraction network

$$I_{L1} = \frac{|I_{CM} + I_{DM}|}{\frac{2}{|I_{CM} - I_{DM}|}}$$
$$I_{L2} = \frac{|I_{CM} - I_{DM}|}{2}$$
$$I_{CM} = \frac{|I_{L1} + I_{L2}|}{2}$$

$$I_{DM} = \frac{|I_{L1} - I_{L2}|}{2}$$

• Mini Circuits power splitter

ZFSC-2-6+

Coaxial

Power Splitter/Combiner

Features

low insertion loss, 0.3 dB typ.

excellent isolation, 30 dB typ.

· rugged shielded case

defense communications

Applications

ham radio

excellent amplitude unbalance, 0.1 dB typ.

excellent phase unbalance, 0.2 deg. typ.

2 Way-0° 50Ω 0.002 to 60 MHz

Maximum Ratings

 Operating Temperature
 -55°C to 100°C

 Storage Temperature
 -55°C to 100°C

 Power Input (as a splitter)
 1W max.*

 Internal Dissipation
 0.125W max.*

 *At low range frequency band (t, to 101,), linearly derate maximum input power by 13 dB typ.
 Permanent damage may occur if any of these limits are exceeded

Coaxial Connections

SUM PORT

ZSCJ-2-2+ Coaxial Power Splitter/Combiner

• HI

2 Way-180° 50Ω

0.01 to 20 MHz

Maximum Ratings

Operating Temperature -55°C to 100°C Storage Temperature -55°C to 100°C

Power Input (as a splitter) 1W max. Internal Dissipation 0.125W max.

At low range frequency band (f, to 10 f,), linearly derate maxi-

mum input power by 13 dB. Permanent damage may occur if any of these limits are exceeded.

Features

low insertion loss, 0.2 dB typ.
high isolation, 30 dB typ.
rugged shielded case

Applications

HF
 radio communication
 instrumentation

ZFSC-2-6+

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

ZSCJ-2-2+

CASE STYLE: M22 Connectors Model BNC ZSCJ-2-2+ BRACKET (OPTION"B") BRACKET (OPTION"BR")

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Outline

I. What is conducted EMI noise

- II. Noise source and propagation path
- **III. Noise measurement and extraction**

IV. Mitigation techniques for conducted EMI

V. A proposed active EMI circuit

Mitigation techniques for conducted EMI (1/4)

Classifications of mitigation techniques for conducted EMI

: Suppression techniques for a finish good design/product

Ref: K. Mainali. al, Conducted EMI Mitigation Techniques for Switch-Mode Power Converters: A Survey, 2010

Mitigation techniques for conducted EMI (2/4)

□Traditional solution 1:

Passive EMI filters (PEFs), e.g. inductors & X/Y capacitors

1/16 brick converter (50W) Its EMI filter board

60% of the volume

40% of the volume

100% of the volume

65W AC-DC power adapter

Its EMI filter (30% of the PCB footprint)

The footprint and volume of PEFs are large. \triangleright

Mitigation techniques for conducted EMI (3/4)

Traditional solution 2:

Active EMI filters (AEFs)

Design complexity of AEFs is high

Bulky magnetics

Effective

Small

□ Pros:

Integration

Cons:

- Design complexity
 - Current/voltage sensor
- Current/voltage injector
- Gain control
- Feedforward/feedback
 - ASTR

Mitigation techniques for conducted EMI (4/4)

Traditional solution 3:

- Snubber circuit
 - ➢ RC circuit, RCD circuit
 - ➢ Related to SW frequency
 - Trade-off between efficiency and EMI

RC : 470pF + 10R

EMI performance at high frequency band (10MHz-30MHz) using different RC

Outline

I. What is conducted EMI noise

- II. Noise source and propagation path
- **III. Noise measurement and extraction**
- **IV. Mitigation techniques**
- V. A proposed active EMI circuit

A proposed active EMI circuit (1/7): circuit topology

1st stage: gain control

2nd stage: PA circuit (optional)

Description of the circuit:

- \succ C_x \rightarrow To sense noise current and inject a compensation voltage.
- ➢ Operational amplifier (Op-amp) → To provide an output voltage which is in phase with the input.
- > R_{g} , R_{f} → To provide a voltage gain.
- Cp → To serve as a transfer unit to transfer sensed current into voltage.
- ➢ Power Amplifier (PA) Circuit → To generate sourcing current and further provide a higher current capability.

□ Novelty:

- Sensor & injector at same point (C_x)
- Simplified design methodology using negative capacitance concept
- Variable resistor & capacitor for gain compensation (temperature/bandwidth)

A proposed active EMI circuit (2/7): operation principle

Operation principle - current controlled voltage source (VCCS)

> Equivalent input impedance would be in the form of a negative capacitance below Cx

A proposed active EMI circuit (3/7): comparison

Comparing with traditional solution 2:

Existing AEFs

≻ The proposed AEF

- Design complexity is reduced
- Higher bandwidth

A proposed active EMI circuit (4/7): implementation

□ Hybrid EMI filter (HEF) schematic and photo

A hybrid EMI filter (HEF) adopting the proposed AEF

Left: top view Right: bottom view

Photo of the HEF prototype (size: 50mm x 27mm)

A proposed active EMI circuit (5/7): testing platform

Working condition of the DC/DC converter: $V_{in} = 12V$, $V_{out} = 5V$ and $I_{out} = 10A$ (full load)

A proposed active EMI circuit (6/7): testing setup

Conductive EMI test in the shielding room

A proposed active EMI circuit (7/7): testing results

- Bare noise of the converter
- With the proposed HEF

- With PEF only - With the proposed HEF

PEF: better performance at low frequency band

AEF: better performance at midrange and high frequency band

107

Outline

I. What is conducted EMI noise

- II. Noise source and propagation path
- **III. Noise measurement and extraction**
- **IV. Mitigation techniques**
- V. A proposed active EMI circuit

- The reduction of conducted EMI noise at its source is more desirable than reduction along the conduction path
- ✓After finishing the design, passive EMI filters and active EMI filters are both good solutions to suppress noise
- ✓ Active EMI filtering technique is promising both on noise reduction of SMPS and the size reduction of EMI filter

Thank You

www.astri.org | TECH FOR IMPACT

Name: Danting XU Email: susanxu@astri.org Contact: 34060269 Date: 2022 Sep 20